
Creating Action Heuristics for General Game Playing Agents

Michal Trutman
Faculty of Information Technology

Brno University of Technology
xtrutm00@stud.fit.vutbr.cz

Stephan Schiffel
School of Computer Science

Reykjavik University
stephans@ru.is

Abstract
Monte-Carlo tree search (MCTS) is the most pop-
ular search algorithm used in General Game Play-
ing (GGP) nowadays mainly because of its ability
to perform well in the absence of domain knowl-
edge. Several approaches have been proposed to
add heuristics to MCTS in order to guide the sim-
ulations. In GGP those approaches typically learn
heuristics at runtime from the results of the simula-
tions. Because of peculiarities of GGP, it is prefer-
able that these heuristics evaluate actions rather
than game positions. We propose an approach that
generates heuristics that estimate the usefulness of
actions by analysing the game rules as opposed to
the simulation results. We present results of exper-
iments that show the potential of our approach.

Monte-Carlo tree search (MCTS) with UCT (Upper Confi-
dence bounds applied to Trees) [Kocsis and Szepesvári, 2006]
has seen wide-spread success in recent years and is the state-
of-the-art in General Game Playing (GGP) [Genesereth et al.,
2005] today. One reason for the success of MCTS in GGP is
that MCTS can find good moves even in the absence of do-
main knowledge in the form of evaluation functions or heuris-
tics. However, that does not mean that MCTS cannot benefit
from heuristics, if they are available. In fact, there are several
examples, such as [Finnsson and Björnsson, 2008] or [Tak et
al., 2012] in GGP and [Lanctot et al., 2014] in game specific
settings that show how heuristics can be used in MCTS to
improve the performance of a game player. In General Game
Playing, a program is presented with the rules of a previously
unknown game and needs to play this game well without hu-
man intervention. Thus, the main problem of using domain
knowledge in the form of heuristics in a General Game Play-
ing program is, that the program must generate or learn the
heuristics automatically for the game at hand.

Heuristics used in search come traditionally in the form
of a state evaluation function, that is, an evaluation of non-
terminal states in a game. Especially in GGP, it seems ad-
vantageous to evaluate actions instead of states. In perfect-
information turn-taking games, there is no difference between
the value of an action in a given state and the value of the state
that is reached by executing that action. However, games in
GGP can have simultaneous moves in which case the succes-

sor state depends on the actions of all players. Even in the
case of turn-taking games, evaluating an action directly in-
stead of the successor state reached by that action saves the
time needed to compute one state update. In GGP, this time is
often significant [Schiffel and Björnsson, 2014], unless dom-
inated by the time for computing the heuristics. Both reasons
make it beneficial to evaluate actions instead of states, espe-
cially in the context of MCTS. Previous approaches to gen-
erate action heuristics in GGP are very limited in the sense
that the learned heuristics are very simple and often ignore
the context (state) in which an action is executed.

In the current work, we are exploring whether more accu-
rate action heuristics can be generated by analysing the rules
of a game instead of learning them from simulation results.
The paper is organized as follows: In the next section we
give a brief background of the game description language and
MCTS. Then we introduce our approach to generate action
heuristics and, finally, we evaluate the approach and discuss
the results.

Preliminaries
Game Description Language
Games in GGP are described in the so-called Game Descrip-
tion Language (GDL) [Love et al., 2008]. A game description
in GDL is a logic program with a number of predefined pred-
icates and restrictions to ensure finiteness of derivations. The
rules in the program can be used to compute an initial state,
legal moves, successor states, terminality of states and goal
values of the players. Thus, they are sufficient to simulate the
game. GDL permits to describe a large range of deterministic
perfect-information simultaneous-move games with an arbi-
trary number of adversaries. Turn-based games can be mod-
elled by only allowing a move with no effect for players that
do not have a turn (a noop move). Predefined predicates have
a game-specific semantic, such as for describing the initial
game state (init), detecting (terminal) and scoring (goal)
terminal states, and for generating (legal) moves and succes-
sor states (next). Each game state can be represented by the
set of facts that hold in the state (e.g., cell(1, 1, b)).

The following figure shows a partial GDL description for a
variant of the game Tic Tac Toe, where the goal was reduced
to build any of the two diagonal lines on the board.

1 role(xplayer). role(oplayer).

GIGA'15 Procededings 39



2 init(cell(1, 1, b)) ... init(cell(3, 3, b)).
3 init(control(xplayer)).
4 legal(W, mark(X, Y)) :- true(cell(X, Y, b)),
5 true(control(W)).
6 legal(oplayer, noop) :-
7 true(control(xplayer)).
8 ...
9 next(cell(M, N, x)) :-

10 does(xplayer, mark(M, N)),
11 true(cell(M, N, b)).
12 next(control(oplayer)) :-
13 true(control(xplayer)).
14 ...
15 diagonal(X) :- true(cell(1, 1, X)),
16 true(cell(2, 2, X)), true(cell(3, 3, X)).
17 goal(xplayer, 100) :- diagonal(x).
18 goal(xplayer, 0) :- diagonal(o).
19 terminal :- diagonal(x).
20 ...

Monte-Carlo Tree Search
Monte-Carlo tree search works by running complete simula-
tions of a game, that is, repeatedly playing a simulation of a
game starting at the current state and stopping when a termi-
nal state is reached. The simulations are used to gradually
build a game tree in memory. The nodes in this tree store the
average reward (goal value) achieved by executing a certain
action in a certain state. When the deliberation time is up, the
player plays the best move in the root node of the tree. Each
simulation consists of four steps:

1. Selection: selecting the actions in the tree based on their
average reward until a leaf node of the tree is reached,

2. Expansion: adding one or several nodes to the tree,
3. Playout: playing randomly from the leaf node of the tree

until a terminal state is reached,
4. Back-Propagation: updating the values of the nodes in

the tree with the reward achieved in the playout.

Related Work
The most common modification of MCTS algorithm is
MCTS with UCT [Kocsis and Szepesvári, 2006] allowing to
set a trade-off between exploration and exploitation. One of
the first attempts to enrich MCTS/UCT with a heuristic was
a progressive bias added to the UCT formula to direct search
according to possibly expensive heuristic knowledge in Go
[Chaslot et al., 2007].

There are two ways to create heuristics. First, offline
heuristics rely on game analysis and feature detection before
the game starts. Once the heuristic is generated, it is used
throughout the game. On the other hand, online heuristics are
learned and improved during game play.

Several ways were suggested of how to automatically gen-
erate heuristic offline. While [Kuhlmann et al., 2006] try
to build a heuristic upon detecting common game features
like a game board, game pieces or quantities; [Waledzik and
Mandziuk, 2014] look for more generic and game indepen-
dent concepts. [Clune, 2007] uses game properties like ter-
mination, control over the board and payoff as components

in his evaluation function. In [Schiffel and Thielscher, 2007]
fuzzy logic is used to evaluate the goal condition in an arbi-
trary state and the value is used as a measure of how close
the state is to a goal state. The approach is further improved
by using feature discovery and was used in Fluxplayer, when
winning the GGP competition in 2006.

A different approach relies on learning a heuristic online
from simulations of the game. The first notable enhancement
of MCTS was Rapid Action Value Estimation (RAVE) [Gelly
and Silver, 2007], a method to speed up the learning process
of action values inside the game tree. A similar technique to
learn state and move knowledge was based on which state flu-
ents mostly occur in the winning states and which moves lie
on the winning paths [Sharma et al., 2008]. The state-of-the-
art has also been greatly advanced by Move-Average Sam-
pling Technique (MAST) [Finnsson and Björnsson, 2008].
MAST is a control scheme used in the playout phase of
MCTS which learns the general value of an action indepen-
dent from the context the action is used in. This and other
control schemes such as Features-to-Action Sampling Tech-
nique (FAST) [Finnsson and Björnsson, 2011], early cutoffs
and unexplored action urgency [Finnsson, 2012] were used
by Cadiaplayer, a successful player that won the GGP com-
petition three times. Recently, the MAST concept was made
more accurate by using sequences of actions of given length
(N-grams) instead of just single actions [Tak et al., 2012]. It
has also been shown, that is possible to get more information
from the playouts by assessing the lengths of simulations and
evaluating the quality of the terminal state reached [Pepels et
al., 2014].

As it was shown in [Coulom, 2006], MCTS converges
slowly to the true Minimax value and therefore different com-
binations of Minimax and MCTS were suggested. While
[Coulom, 2006] use a different operator for backing up
the values through the tree instead of just averaging them;
[Winands et al., 2010] introduce MCTS Solver, an αβ-
search-like approach to prove correct values of fully ex-
panded parts of the game tree in Lines of Actions. Recently,
[Lanctot et al., 2014] experiment with calculating approxi-
mate Minimax backups from heuristic values to further im-
prove node selection in Kalah, Breakthrough and Lines of
Action. However, the heuristic is currently built on game spe-
cific knowledge.

Generating Action Heuristic
Our idea for generation of an action heuristic is to create
an action-based version of the state evaluation function de-
scribed in [Schiffel and Thielscher, 2007], which uses fuzzy
logic to evaluate the degree of truth of a goal condition. Turn-
ing it into an action heuristic is achieved by taking the goal
condition, regressing it one step and filtering it according to
an action a of a player p. This yields a new condition which
– when satisfied in the current game state – allows player p to
achieve the goal condition by executing action a.

Regression
Our definition of regression is based on regression in the sit-
uation calculus as defined in [Reiter, 2001]. Similar to situa-
tion formulas in situation calculus, we define a state formula

40 GIGA'15 Proceedings



in a game as any first-order formula over the predicate, func-
tion and constant symbols of the game description with the
exception of the does predicate and any predicate depending
on does.

Thus, the truth value of a state formula can be determined
in any state independently on the actions that players choose
in that state. For example, goal(xplayer, 100) is a state for-
mula in our Tic Tac Toe game, because goal may not depend
on does according to GDL restrictions. For the purpose of
this paper, we only consider variable-free state formulas and
game descriptions. Generalizing the proposed algorithm to
non-ground game descriptions should be straight-forward.

The regression of a variable-free state formula F by one
step, denoted asR[F ], is defined recursively as follows:
• R[true(X)] = F1 ∨ F2 ∨ . . . ∨ Fn

where Fi are the bodies of all rules of the following form
in the game description: next(X) :– Fi
• R[distinct(a1, a2)] = distinct(a1, a2)
• If F is any atom p(a1, a2, . . . , an) other than true or

distinct, then
R[F ] = R[F1] ∨R[F2] ∨ . . .R[Fn]

where Fi are the bodies of all rules with head
p(a1, a2, . . . , an).
• If F is a non-atomic formula then the regression is de-

fined as follows:
R[F1 ∨ F2] = R[F1] ∨R[F2]

R[F1 ∧ F2] = R[F1] ∧R[F2]

R[¬F ] = ¬R[F ]
Note, that the regression of a state formula is not a state

formula in general. On the contrary, replacing true(X) with
the next(X) during the regression, introduces dependencies
on the does predicate and thus the executed moves. These
dependencies will be used in the following section to define a
heuristic function for each action.

Algorithm
Based on the previous definition, we propose the following
algorithm to generate a heuristic function for each action a of
a player p. The algorithm consists of following steps:

1. Compute R[goal(p, 100)], the regression of
goal(p, 100). 1 R[goal(p, 100)] represents a con-
dition on a state and actions of players that – when
fulfilled – allow to reach a goal state for player p.

2. R[goal(p, 100)] contains conditions on actions of play-
ers. However, we want a formula that indicates when it
is a good idea for player p to execute action a. To ob-
tain such a formula, we restrictR[goal(p, 100)] to those
parts that are consistent with does(p, a). In practice this
is achieved by replacing all occurrences of does(r, b) for
any r and b inR[goal(p, 100)] as follows:

1In the current implementation, we take into consideration only
the highest valued goal for each player. Combining different
goals could be done similar to the way described in [Schiffel and
Thielscher, 2007], but would make the heuristics more expensive to
compute.

(a) In case p = r and a = b, the occurrence of
does(r, b) is replaced with the boolean constant
true.

(b) In case p = r, but a 6= b, the occurrence of
does(r, b) is replaced with the boolean constant
false.

(c) In case p 6= r, the condition is on an action for
another player. In that case, the replacement de-
pends on whether or not the game is turn-taking2.
If the game has simultaneous moves, does(r, b) is
replaced with the unknown value in three-valued
logic. This represents, that we are not sure, which
action the opponent decides to play. In case of
a turn-taking game, if b is a noop action, the
does(r, b) is replaced with true, otherwise with
false (because r must do a noop action if p is do-
ing a non-noop action such as a).

3. The formula is simplified according to laws of three-
valued logic. In particular, any boolean values intro-
duced by the previous replacement step are propagated
up and the formula is partially evaluated.

Tic Tac Toe
Let us demonstrate, how the algorithm works on the simpli-
fied version of the game Tic Tac Toe, where the goal was
reduced to build only some of the two diagonal lines. The
grounded and expanded version of the goal for the player
xplayer is(

true(cell(1, 1, x)) ∧ true(cell(2, 2, x)) ∧
true(cell(3, 3, x))

)
∨
(
true(cell(1, 3, x)) ∧

true(cell(2, 2, x)) ∧ true(cell(3, 1, x))
) (1)

Assume, we are computing the heuristic function for the
action mark(1, 1) for the role xplayer. The regression of
the goal above will replace all occurrences of true(X) with
the bodies of the respective next rules. For example, for
true(cell(1, 1, x)), the grounded game description contains
following next rules with matching arguments:

next(cell(1, 1, x)) :- true(cell(1, 1, b)),
does(xplayer, mark(1, 1)).

next(cell(1, 1, x)) :- true(cell(1, 1, x)).

To regress true(cell(1, 1, x)), we replace it with the dis-
junction of the bodies of the next rules:(

true(cell(1, 1, b)) ∧ does(xplayer,mark(1, 1))
)
∨

true(cell(1, 1, x))
(2)

does(xplayer,mark(1, 1)) in (2) is further replaced with
boolean true, because both role and action match the ones we
are interested in right now.(

true(cell(1, 1, b)) ∧ T
)
∨ true(cell(1, 1, x)) (3)

2We detect whether a game is turn-taking and also which action
is the noop action, using a theorem prover [Haufe et al., 2012] or
using random simulation in case theorem proving does not yield an
answer. The cost of this is negligible compared to, e.g., grounding
the game rules.

GIGA'15 Procededings 41



The formula (3) can be simplified, which yields (4) as the
final replacement for true(cell(1, 1, x)):

true(cell(1, 1, b)) ∨ true(cell(1, 1, x)) (4)

Going back to the goal condition (1), the next part of the
formula to be regressed is true(cell(2, 2, x)). The matching
next rules are:

next(cell(2, 2, x)) :- true(cell(2, 2, b)),
does(xplayer, mark(2, 2)).

next(cell(2, 2, x)) :- true(cell(2, 2, x)).

This time, the does(xplayer,mark(2, 2)) is replaced with
boolean false, because the role matches, but the action does
not. This yields formula (5), which can be simplified to
(6). This equals the term we have started with, meaning that
true(cell(2, 2, x)) stays in the formula untouched.(

true(cell(2, 2, b)) ∧ F
)
∨ true(cell(2, 2, x)) (5)

true(cell(2, 2, x)) (6)

We repeat the same steps for any other true keywords in
the goal (1). As in the previous case, each term is replaced
by the term itself and nothing in the formula is changed. The
final heuristic formula for xplayer taking action mark(1, 1)
is: (

true(cell(2, 2, x)) ∧ true(cell(3, 3, x)) ∧
(true(cell(1, 1, b)) ∨ true(cell(1, 1, x)))

)
∨(

true(cell(3, 1, x)) ∧ true(cell(2, 2, x)) ∧
true(cell(1, 3, x))

) (7)

As can be seen, this condition describes a situation in
which xplayer taking action mark(1, 1) would lead to a win-
ning state. Thus, a boolean evaluation of such conditions for
all legal moves in a state is equivalent to doing 1-ply looka-
head.

Evaluation
Using the algorithm above, the heuristic formula is con-
structed for any role and any potentially legal move during
the start clock. During game play, the formula for each le-
gal action is evaluated against the current game state s using
fuzzy logic as described in [Schiffel and Thielscher, 2007],
but with different t-norm and t-co-norm, as the original ones
proved to be too slow. For non-atomic formulas the evalua-
tion function is defined as

eval(f ∧ g, s) = >(eval(f, s), eval(g, s))
eval(f ∨ g, s) = ⊥(eval(f, s), eval(g, s))
eval(¬f, s) = 1− eval(f, s)

where > and ⊥ are the product t-norm and t-co-norm:

>(a, b) = a · b
⊥(a, b) = a+ b− a · b

All remaining atoms of the heuristic formula are of the
form true(X), these are evaluated as

eval(true(f), s) =

{
p if f is true in s
1− p otherwise

We used p = 0.97 for our experiments.
Thus, our action heuristics can be defined as H(s, r, a) =

eval(Fr,a, s), where Fr,a is the heuristic formula constructed
for role r and action a.

In essence, a higher value of the evaluation means, that
more prerequisites are satisfied for a particular action to lead
to a goal state.

The heuristic values for each legal action in the initial state
of the aforementioned version of the game Tic Tac Toe are
shown in the following table.

(1, 3)
0.0026

(2, 3)
0.0018

(3, 3)
0.0026

(1, 2)
0.0018

(2, 2)
0.0035

(3, 2)
0.0018

(1, 1)
0.0026

(2, 1)
0.0018

(3, 1)
0.0026

The heuristic function was evaluated in the initial game
state (empty board). We can see, that the action with the high-
est value, is to take the middle cell (mark(2, 2)), followed by
4 actions taking one of the corner cells. Indeed, this corre-
sponds with the fact that marking the middle cell as the first
action leads to the most options for winning the game.

In [Schiffel and Thielscher, 2007] and [Michulke and
Schiffel, 2013], we described methods for improving the
fuzzy evaluation by using additional knowledge about the
game for the evaluation of the atoms. The same methods can
be used for the action heuristics presented here. For the exper-
iments presented in the next section, we restricted ourselves
to using only very limited additional knowledge especially
selected for not increasing the time for evaluating the heuris-
tics significantly. In particular, we only use knowledge about
persistent fluents as defined in [Haufe et al., 2012].

A fluent is persistent true if, once it holds in a state, it will
persist to hold in all future states. For example, cell(1, 1, x)
is persistent true in Tic Tac Toe. A fluent is persistent false if,
once it does not hold in a state, it will never hold in any future
state. For example, cell(1, 1, b) is persistent false in Tic Tac
Toe.

Information like this can be detected in some, but not all
of the games we tested. In case we could (automatically)
infer this knowledge, we modify the evaluation function as
follows:

eval(true(f), s) =



1 if f is true in s and
f is persistent true

p if f is true in s and
f is not persistent true

0 if f is false in s and
f is persistent false

1− p otherwise

Search Controls
In this section we recapitulate three ways, how an action
heuristic can be utilized in the MCTS player to control differ-

42 GIGA'15 Proceedings



Game No heur. vs. Playout h. No heur. vs. Tree h. No heur. vs. Combined h.
battle 90.2 × 80.9 (±2.46) 87.3 × 95.1 (±2.05) 91.6 × 84.9 (±1.95)
bidding-tictactoe 19.2 × 80.8 (±3.47) 42.8 × 57.2 (±3.01) 19.7 × 80.3 (±3.57)
blocker 61.0 × 39.0 (±5.52) 48.0 × 52.0 (±5.65) 67.3 × 32.7 (±5.31)
breakthrough 51.3 × 48.7 (±5.66) 47.3 × 52.7 (±5.65) 48.7 × 51.3 (±5.66)
checkers-small 94.3 × 5.7 (±2.36) 50.2 × 49.8 (±4.39) 96.0 × 4.0 (±1.91)
chinesecheckers2 81.0 × 69.0 (±2.75) 75.3 × 74.6 (±2.84) 85.7 × 64.3 (±2.56)
chinook 76.0 × 32.0 (±5.06) 54.7 × 56.3 (±5.62) 76.0 × 37.0 (±5.15)
connect4 81.2 × 18.8 (±4.11) 56.8 × 43.2 (±5.44) 86.7 × 13.3 (±3.56)
crisscross 75.3 × 49.8 (±3.99) 62.3 × 62.8 (±4.24) 74.3 × 50.8 (±4.03)
ghostmaze2p 28.7 × 71.3 (±3.12) 19.5 × 80.5 (±3.26) 30.8 × 69.2 (±3.38)
nineBoardTicTacToe 26.7 × 73.3 (±5.00) 32.3 × 67.7 (±5.29) 22.7 × 77.3 (±4.74)
pentago 2008 22.7 × 77.3 (±4.48) 35.5 × 64.5 (±5.10) 21.2 × 78.8 (±4.25)
sheep and wolf 74.7 × 25.3 (±4.92) 51.7 × 48.3 (±5.65) 78.7 × 21.3 (±4.64)
skirmish 70.1 × 69.0 (±1.14) 79.4 × 77.3 (±1.51) 78.4 × 75.0 (±1.49)

Table 1: Tournament using playout, tree and combined heuristic against pure MCTS player with fixed number of simulations.

Game MAST vs. Playout h. RAVE vs. Tree h. MAST+RAVE vs. Combi. h.
battle 95.0 × 83.7 (±1.83) 87.9 × 96.1 (±1.95) 94.1 × 80.1 (±1.77)
bidding-tictactoe 26.2 × 73.8 (±4.24) 41.1 × 58.9 (±3.05) 26.5 × 73.5 (±4.34)
blocker 60.0 × 40.0 (±5.54) 50.8 × 49.2 (±5.67) 59.3 × 40.7 (±5.56)
breakthrough 45.7 × 54.3 (±5.64) 50.0 × 50.0 (±5.66) 52.3 × 47.7 (±5.65)
checkers-small 95.0 × 5.0 (±2.14) 51.0 × 49.0 (±4.33) 95.0 × 5.0 (±2.04)
chinesecheckers2 96.4 × 53.3 (±1.48) 74.8 × 75.2 (±2.84) 95.1 × 54.5 (±1.69)
chinook 84.0 × 30.7 (±4.68) 52.0 × 59.0 (±5.61) 86.3 × 28.0 (±4.48)
connect4 83.3 × 16.7 (±4.04) 52.8 × 47.2 (±5.45) 83.0 × 17.0 (±3.91)
crisscross 62.8 × 62.3 (±4.24) 62.3 × 62.8 (±4.24) 62.5 × 62.5 (±4.24)
ghostmaze2p 31.3 × 68.7 (±3.37) 20.2 × 79.8 (±3.17) 33.3 × 66.7 (±3.53)
nineBoardTicTacToe 34.3 × 65.7 (±5.37) 35.3 × 64.7 (±5.41) 31.3 × 68.7 (±5.25)
pentago 2008 21.2 × 78.8 (±4.37) 42.3 × 57.7 (±5.28) 20.3 × 79.7 (±4.19)
sheep and wolf 77.0 × 23.0 (±4.76) 53.7 × 46.3 (±5.64) 76.3 × 23.7 (±4.81)
skirmish 80.5 × 79.7 (±1.52) 79.7 × 77.6 (±1.52) 84.8 × 75.3 (±1.56)

Table 2: Tournament against MAST and RAVE player with constant time per turn.

ent part of the search. All methods are described in [Finnsson
and Björnsson, 2011]. While the first method uses the heuris-
tic to guide the random playouts, in the second one it controls
the search tree growth in the selection phase. The last ap-
proach presented is a combination these two concepts. We
will use these methods later together with our own heuristics.

Playout Heuristic
In the standard MCTS with UCT, actions are selected uni-
formly at random during the playout phase. However, if we
have any information on which actions are good, it is bet-
ter to bias the action selection in favor of more promising
moves [Finnsson and Björnsson, 2008]. This can be accom-
plished using the Gibbs (Boltzmann) distribution:

P (s, r, a) =
eH(s,r,a)/τ∑
a′ e

H(s,r,a′)/τ

where P (s, r, a) is the probability that the action a will be
chosen by role r in the current playout state s andH(s, r, a) is
the action heuristic function. The parameter τ is temperature
and specifies how random actions are chosen. Whereas the
high values makes it rather uniform; τ → 0 means that more

valued actions are chosen more likely. Based on trial and
error testing, good values for τ lie somewhere between 0.5
and 2. We used τ = 1 in our tests.

One drawback of this method is, that the heuristic function
must be evaluated for all legal moves in every playout state
within the simulation, which is sometimes too costly.

Tree Heuristic
An action heuristic commonly used in the game tree is Rapid
Action Value Estimation (RAVE) [Gelly and Silver, 2007]. It
keeps a special value QRAV E(s, r, a), which is an average
outcome of simulations, where action a was taken by role r
in any state on the path below s.

In our case, instead ofQRAV E , we use the valueH(s, r, a)
provided by the action heuristic described earlier. Initially,
only the heuristic is used to give an estimate of the action
value, but as the sampled action value Q(s, r, a) becomes
more reliable with more simulations executed, it should be
more trusted over the heuristic H(s, r, a). This is achieved
by using a weighted average as in RAVE:

Q(s, r, a)′ := β(s)×H(s, r, a) + (1− β(s))×Q(s, r, a)

GIGA'15 Procededings 43



Cost Time spent on heuristic Relative number of simuls.
Game of gen. Playout Tree Combi. Playout Tree Combi.
battle 13.0 s 44.6 % 0.0 % 44.3 % 67.2 % 99.3 % 66.9 %
bidding-tictactoe 0.2 s 15.8 % 0.2 % 15.5 % 125.4 % 103.2 % 125.2 %
blocker 0.2 s 45.3 % 0.1 % 42.8 % 65.0 % 95.9 % 70.2 %
breakthrough 3.5 s 53.4 % 0.1 % 53.2 % 46.3 % 104.4 % 46.2 %
checkers-small 14.8 s 22.9 % 0.1 % 22.9 % 80.6 % 103.0 % 81.4 %
chinesecheckers2 0.1 s 8.3 % 0.1 % 8.4 % 91.9 % 101.0 % 91.1 %
chinook 2.5 s 9.2 % 0.0 % 9.2 % 129.6 % 102.7 % 131.4 %
connect4 1.6 s 56.1 % 1.6 % 55.0 % 91.2 % 115.8 % 96.7 %
crisscross 2.7 s 5.5 % 0.6 % 6.0 % 100.4 % 99.8 % 103.2 %
ghostmaze 0.2 s 44.4 % 0.7 % 43.3 % 70.7 % 102.9 % 74.9 %
nineBoardTicTacToe 4.0 s 47.4 % 0.6 % 46.3 % 174.7 % 103.6 % 176.4 %
pentago 2008 1.2 s 69.4 % 0.3 % 69.3 % 52.2 % 100.2 % 52.2 %
sheep and wolf 3.4 s 14.1 % 0.1 % 14.1 % 84.4 % 103.0 % 84.1 %
skirmish 6.8 s 26.3 % 0.1 % 26.2 % 72.2 % 100.5 % 73.0 %

Table 3: Cost of generating the action heuristic, % of the game time spent on evaluating it and relative number of simulations
compared to the non-heuristic player..

with

β(s) =

√
k

3×N(s) + k

The equivalence parameter k controls, how many simu-
lations are needed for both estimates to have equal weights.
The N(s) function returns number of visits of the state s.

Before use, all heuristic values H(s, r, a) are normalized
and scaled into the range 0 to 100 which is the range of pos-
sible game outcomes. We use k = 20 in our tests, as it turned
out to work best with the heuristic function we use.

Combined Heuristic
Both of the previous control schemes can be combined to-
gether and a heuristic can be used to guide the action selec-
tion both during the random playouts and in the game tree.
As was shown in [Finnsson and Björnsson, 2010], this com-
bination has a synergic effect, when they used RAVE as a tree
heuristic and MAST as a playout heuristic. In our case, we
use the action heuristic we developed in both control schemes
with the same parameters as mentioned above.

Results
We run two sets of experiments. First, we matched play-
ers using the three aforementioned concepts of the action
heuristic (playout, tree and combined heuristic) against a pure
MCTS/UCT player with constant number of simulations per
turn. Then, we matched playout, tree and combined heuris-
tic against MAST, RAVE and MAST+RAVE players, respec-
tively. We did not match MAST against our tree heuristic,
because they operate in different stages of MCTS and the re-
sults are not comparable. Similarly for playout heuristics vs.
RAVE. Constant time per turn was used in this experiment.
We set temperature τ = 10 for MAST and equivalence pa-
rameter k = 1000 for RAVE as recommended in [Finnsson
and Björnsson, 2010].

Each set consists of 300 matches per game with each con-
trol scheme. The tests were run on Linux with multicore

Intel(R) Xeon(R) 2.40 GHz processor with 4 GB memory
limit and 1 CPU core assigned to each agent. Rules for
all the games tested can be found in the game repository at
games.ggp.org.

Playing Strength
Table 1 shows the average scores reached by the pure MCTS
and the heuristic agent along with a 95 % confidence interval.
We allowed 10000 simulations per turn and the time spent on
evaluating the heuristic was measured.

The game with the strongest position of the combined
scheme is Bidding Tic Tac Toe with a score 80 (±3.5) against
20; it is also good in Nine Board Tic Tac Toe, Pentago and
Ghost Maze. On the other hand, it is particularly bad in
Checkers and Connect4, but closer look reveals, that this is
only because of the playout heuristic, while the tree heuristic
has not much influence in these games. The playout heuristic
follows the similar trend as the combined scheme. The tree
heuristic is also significantly better in Battle and there is no
game with totally hopeless result as there was with the play-
out heuristic.

It is also worth mentioning, how the results in the com-
bined control scheme are connected to the playout and the
tree heuristic. It seems, the influence of the playout heuris-
tic on the overall result is much higher. Especially, when
it is useless or even misleading, then the combined result is
dragged down by it (Checkers, Connect4). It seems that the
playout heuristic is more vulnerable, while the tree heuristic
control scheme can recover when the heuristic is misleading.
Thus, it is essential for the playout heuristic to be good, if it
is used.

Bidding Tic Tac Toe is a game, where two players are bid-
ding coins in order to mark a cell with an objective to build
a line of three symbols as in Tic Tac Toe. However, the key
property of this game is the bidding part – by doing wrong
bids, the game can be easily lost, even when the markers are
placed in good positions on the board. The action heuristic
does not help in any way with the bidding, it only helps to

44 GIGA'15 Proceedings



arrange the markers in a line. In spite of this, all the heuristic
agents still have a significant advantage in this game. One
explanation is that when a player wins a bid, it can actually
use its move well which makes especially the playouts more
reliable.

Table 2 shows results for matches played against
MAST, RAVE and MAST+RAVE. Although MAST and
MAST+RAVE outperforms the playout and the combined
heuristic in most of the games, they still hold their good po-
sition in Pentago or Nine Board Tic Tac Toe. The heuris-
tic performs surprisingly well against RAVE with no signif-
icant loss. By comparing tables 1 and 2, we see that our ac-
tion heuristics perform well against MAST and RAVE in ex-
actly the same games in which they did well against a pure
MCTS/UCT player. This suggests, that our approach is com-
plementing MAST and RAVE by improving performance in
games in which MAST and RAVE do not seem to have much
positive effect.

In general, it can be said, that the heuristic player performs
very well in Tic Tac Toe-like games, as they contain many
persistently true fluents and the heuristic is built in such a
way, that it leads the player to the goal directly.

Time Spent on Evaluating the Heuristic

Table 3 shows how much time during the game time was spent
on evaluating the heuristic and the time needed to generate the
heuristic functions for each game. These numbers do not in-
clude the time required for grounding the game description.
However, most general game players use grounded game de-
scriptions for reasoning nowadays, such that grounding needs
to be done anyway.

The time required to generate the action heuristic is rela-
tively small for the games tested, except for Checkers with
almost 15 seconds and Battle with 13 seconds. However,
the time spent on evaluating the heuristic is more important.
While it is almost negligible for tree heuristic, it ranges from
5 to 70 % depending on the game for playout and combined
heuristic. The table also shows ratio between the time needed
to run 10000 game simulations by the pure and the heuristic
players. Surprisingly, the heuristic player can sometimes run
significantly more simulations than its non-heuristic counter-
part, because the heuristic makes the simulations effectively
shorter and thus taking less time. A good example of this be-
havior is in Nine Board Tic Tac Toe, where about 50 % of the
game time is spent on evaluating the heuristic, but still with
about three quarters more simulations done. Moreover, the
combined heuristic player won 77 % of the matches against
pure MCTS/UCT.

An idea, how to make the evaluation faster is to investigate
pruning of the heuristic formula. It seems that some parts of it
are triggered only in some relatively rare game states and do
not contribute much to the overall result. Also evaluation of
state fluents that are changing wildly from state to state (like
control fluent) has probably a little influence on the playing
strength.

Testing with Other Games
We have been able to generate action heuristic for 113 games
out of 127 available on the Tiltyard server3. Of those 14
games that failed we were not able to ground the game rules
in 5 cases. Others failed mostly because the goal condition
was particularly complex.

A game that showed to be most problematic is Othello,
because the grounded version of the goal is extremely big.
Other games that failed include different versions of Chess,
Amazons and Hex. On the other hand, there are some games,
where the grounded game description is still rather big, but
the goal condition itself is relatively simple. In this case, we
are able to generate the action heuristic successfully. Exam-
ples of such games are Breakthrough or Skirmish.

Conclusion
We have presented a general method of creating action heuris-
tic in General Game Playing based on regression and fuzzy
evaluation. We used the heuristics in three different search
control schemes for MCTS and demonstrated the effective-
ness by comparing it with a pure MCTS/UCT, RAVE and
MAST players. The combined heuristic agent outperforms
these players in well-known games like Bidding Tic Tac Toe,
Pentago or Nine Board Tic Tac Toe; however it shows signif-
icant loss ratio in Checkers and Connect 4.

At least partly this behavior can be explained by the fact
that Tic Tac Toe-like games typically contain many persis-
tent fluents which we use to improve the heuristics. Thus,
one idea for improving the quality of the heuristics in other
games is to use more feature discovery techniques, such as
the ones described in [Kuhlmann et al., 2006], [Schiffel and
Thielscher, 2007] or [Michulke and Schiffel, 2013]. Another
idea would be to regress the goal condition by more than one
step. In both cases care has to be taken to not increase the
evaluation time too much.

There are still certain issues to be addressed. Notably, the
playout heuristic seems to be prone to be misleading. As it
has the most influence on the overall performance, this be-
havior should be further investigated.

Future work should also investigate pruning of the heuristic
formula to only include the most relevant features in order to
reduce evaluation time.

References
[Chaslot et al., 2007] Guillaume M. J. B. Chaslot, Mark

H. M. Winands, H. Jaap van den Herik, Jos W. H. M.
Uiterwijk, and Bruno Bouzy. Progressive strategies for
Monte-Carlo tree search. In Proceedings of the 10th Joint
Conference on Information Sciences (JCIS 2007), pages
655–661. World Scientific Publishing Co. Pte. Ltd., 2007.

[Clune, 2007] James Clune. Heuristic evaluation functions
for general game playing. In AAAI, pages 1134–1139.
AAAI Press, 2007.

[Coulom, 2006] Rémi Coulom. Efficient selectivity and
backup operators in Monte-Carlo tree search. In CG2006,
pages 72–83, 2006.
3tiltyard.ggp.org

GIGA'15 Procededings 45



[Finnsson and Björnsson, 2008] Hilmar Finnsson and Yngvi
Björnsson. Simulation-based approach to general game
playing. In AAAI. AAAI Press, 2008.

[Finnsson and Björnsson, 2010] Hilmar Finnsson and Yngvi
Björnsson. Learning simulation control in general game
playing agents. In AAAI, pages 954–959. AAAI Press,
2010.

[Finnsson and Björnsson, 2011] Hilmar Finnsson and Yngvi
Björnsson. Cadiaplayer: Search-control techniques. KI,
25(1):9–16, 2011.

[Finnsson, 2012] Hilmar Finnsson. Generalized Monte-
Carlo tree search extensions for general game playing. In
Twenty-Sixth AAAI Conference on Artificial Intelligence,
2012.

[Gelly and Silver, 2007] Sylvain Gelly and David Silver.
Combining online and offline knowledge in UCT. In Pro-
ceedings of the 24th International Conference on Machine
Learning, volume 227, pages 273–280, 2007.

[Genesereth et al., 2005] Michael R. Genesereth, Nathaniel
Love, and Barney Pell. General game playing: Overview
of the AAAI competition. AI Magazine, 26(2):62–72,
2005.

[Haufe et al., 2012] Sebastian Haufe, Stephan Schiffel, and
Michael Thielscher. Automated verification of state se-
quence invariants in general game playing. Artificial Intel-
ligence, 187-188:1–30, 2012.

[Kocsis and Szepesvári, 2006] Levente Kocsis and Csaba
Szepesvári. Bandit based Monte-Carlo planning. In
ECML, page 282–293, 2006.

[Kuhlmann et al., 2006] Gregory Kuhlmann, Kurt Dresner,
and Peter Stone. Automatic heuristic construction in a
complete general game player. In Proceedings of the
Twenty-First National Conference on Artificial Intelli-
gence, pages 1457–62, 2006.

[Lanctot et al., 2014] Marc Lanctot, Mark H. M. Winands,
Tom Pepels, and Nathan R. Sturtevant. Monte Carlo tree
search with heuristic evaluations using implicit minimax
backups. In 2014 IEEE Conference on Computational In-
telligence and Games (CIG 2014), pages 341–348, 2014.

[Love et al., 2008] Nathaniel Love, Timothy Hinrichs,
David Haley, Eric Schkufza, and Michael Genesereth.
General game playing: Game description language
specification. Technical report, Stanford University,
March 2008. most recent version should be available at
http://games.stanford.edu/.

[Michulke and Schiffel, 2013] Daniel Michulke and Stephan
Schiffel. Admissible distance heuristics for general games.
In Agents and Artificial Intelligence, volume 358, pages
188–203. Springer Berlin Heidelberg, 2013.

[Pepels et al., 2014] Tom Pepels, Mandy J. W. Tak, Marc
Lanctot, and Mark H. M. Winands. Quality-based rewards
for Monte-Carlo tree search simulations. In 21st European
Conference on Artificial Intelligence (ECAI 2014), pages
705–710. IOS Press, 2014.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logi-
cal Foundations for Specifying and Implementing Dynami-
cal Systems, pages 61–73. Massachusetts Institute of Tech-
nology, 2001.

[Schiffel and Björnsson, 2014] Stephan Schiffel and Yngvi
Björnsson. Efficiency of GDL reasoners. IEEE Trans-
actions on Computational Intelligence and AI in Games,
2014.

[Schiffel and Thielscher, 2007] Stephan Schiffel and
Michael Thielscher. Fluxplayer: A successful general
game player. In Proceedings of the 22nd AAAI Conference
on Artificial Intelligence (AAAI-07), pages 1191–1196.
AAAI Press, 2007.

[Sharma et al., 2008] Shiven Sharma, Ziad Kobti, and
Scott D. Goodwin. Knowledge generation for improv-
ing simulations in UCT for general game playing. In
Australasian Conference on Artificial Intelligence, volume
5360. Springer, 2008.

[Tak et al., 2012] Mandy J. W. Tak, Mark H. M. Winands,
and Yngvi Björnsson. N-grams and the last-good-reply
policy applied in general game playing. In IEEE Trans-
actions on Computational Intelligence and AI in Games,
pages 73–83, 2012.

[Waledzik and Mandziuk, 2014] K. Waledzik and J. Mandz-
iuk. An automatically generated evaluation function in
general game playing. Computational Intelligence and
AI in Games, IEEE Transactions on, 6(3):258–270, Sept
2014.

[Winands et al., 2010] Mark H. M. Winands, Yngvi
Björnsson, and Jahn-Takeshi Saito. Monte-Carlo tree
search in lines of action. In IEEE Transactions on Com-
putational Intelligence and AI in Games, pages 239–250,
2010.

46 GIGA'15 Proceedings


