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Abstract
Many real-world systems can be represented as for-
mal state transition systems. The modelling pro-
cess, in other words the process of constructing
these systems, is a time-consuming and error-prone
activity. In order to counter these difficulties, ef-
forts have been made in various communities to
learn the models from input data. One learning ap-
proach is to learn models from example transition
sequences. Learning state transition systems from
example transition sequences is helpful in many sit-
uations. For example, where no formal description
of a transition system already exists, or when wish-
ing to translate between different formalisms.
In this work, we study the problem of learning for-
mal models of the rules of board games, using as
input only example sequences of the moves made
in playing those games. Our work is distinguished
from previous work in this area in that we learn the
interactions between the pieces in the games. We
supplement a previous game rule acquisition sys-
tem by allowing pieces to be added and removed
from the board during play, and using a planning
domain model acquisition system to encode the re-
lationships between the pieces that interact during
a move.

1 Introduction
Over the last decade, or ever since the advent of the Gen-
eral Game-Playing (GGP) competition [Genesereth et al.,
2005], research interest in general approaches to intelligent
game playing has become increasingly mainstay. GGP sys-
tems autonomously learn how to skilfully play a wide vari-
ety of (simultaneous or alternating) turn-based games, given
only a description of the game rules. Similarly, General
Video-Game (GVG) systems learn strategies for playing vari-
ous video games in real-time and non-turn-based settings.

In the above mentioned systems the domain model (i.e.,
rules) for the game at hand is sent to the game-playing agent
at the beginning of each match, allowing legitimate play off
the bat. For example, games in GGP are described in a
language named Game Description Language (GDL) [Love

et al., 2006], which has axioms for describing the initial
game state, the generation of legal moves and how they al-
ter the game state, and how to detect and score terminal po-
sitions. Respectively, video games are described in the Video
Game Description Language (VGDL) [Schaul, 2013]. The
agent then gradually learns improved strategies for playing
the game at a competitive level, typically by playing against
itself or other agents. However, ideally one would like to
build fully autonomous game-playing systems, that is, sys-
tems capable of learning not only the necessary game-playing
strategies but also the underlying domain model. Such sys-
tems would learn skilful play simply by observing others play.

Automated model acquisition is an active research area
spanning many domains, including constraint programming
and computer security (e.g. [O’Sullivan, 2010; Bessiere
et al., 2014; Aarts et al., 2013]). There has been some
recent work in GGP in that direction using a simplified
subset of board games, henceforth referred to as Simplifed
Game Rule Learner (SGRL) [Björnsson, 2012]. In the re-
lated field of autonomous planning, the LOCM family of
domain model acquisition systems [Cresswell et al., 2009;
Cresswell and Gregory, 2011; Cresswell et al., 2013] learn
planning domain models from collections of plans. In com-
parison to other systems of the same type, these systems re-
quire only a minimal amount of information in order to form
hypotheses: they only require plan traces, where other sys-
tems require state information.

In this work we extend current work on learning formal
models of the rules of (simplified) board games, using as in-
put only example sequences of the moves made in playing
those games. More specifically, we extend the previous SGRL
game rule acquisition system by allowing pieces to be added
and removed from the board during play, and by using the
LOCM planning domain model acquisition system for encod-
ing and learning the relationships between the pieces that in-
teract during a move, allowing modelling of moves that have
side effects (such as castling in chess). Our work is thus dis-
tinguished from previous work in this area in that we learn
the interactions between the pieces in the games.

The paper is structured as follows: the next section pro-
vides necessary background material on LOCM and SGRL,
followed by a description of the combined approach. This
is followed by empirical evaluation and overview of related
work, before concluding and discussing future work.
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2 Background
In this section we provide background information about the
LOCM and SGRL model acquisition systems that we base
the present work on.

2.1 LOCM
The LOCM family of domain model acquisition systems
[Cresswell et al., 2009; Cresswell and Gregory, 2011] are in-
ductive reasoning systems that learn planning domain models
from only action traces. This is large restriction, as other sim-
ilar systems require extra information (such as predicate defi-
nitions, initial and goal states, etc.). LOCM is able to recover
domain information from such a limited amount of input due
to assumptions about the structure of the output domain.

A full discussion of the LOCM algorithm is omitted and
the interested reader is referred to the background litera-
ture [Cresswell et al., 2009; Cresswell and Gregory, 2011;
Gregory and Cresswell, 2015] for more information. How-
ever, we discuss those aspects of the system as relevant to
this work. We use the well-known Blocksworld domain as
an example to demonstrate the form of input to, and output
gained from, LOCM. Although a simple domain, it is useful
as it demonstrates a range of features from both LOCM and
LOCM2 that are relevant to this work.

The input to the LOCM system is a collection of plan
traces. Suppose, in the Blocksworld domain, we had the
problem of reversing a two block tower, where block A is ini-
tially placed on block B. The following plan trace is a valid
plan for this problem in the Blocksworld domain:

(unstack A B)
(put-down A)
(pick-up B)
(stack B A)

Each action comprises a set of indexed object transitions.
For example, the unstack action comprises a transition for
block A (which we denote as unstack.1) and another for block
B (which we denote as unstack.2). A key assumption in the
LOCM algorithm is that the behaviour of each type of object
can be encoded in one or more DFAs, where each transition
appears at most once. This assumption means that for two
object plan traces with the same prefix, the next transition for
that object must exit from the same state. Consider plan trace
1 and 2 below:

1: (unstack A B)
1: (put-down A)

2: (unstack X Y)
2: (stack X Z)

In the first plan trace, block A is unstacked, before be-
ing put down on to the table. In the second plan trace, X
is unstacked from block Y before being stacked on to another
block, Z. The assumption that each transition only exists once
within the DFA description of an object type means that the
state that is achieved following an unstack.1 transition is the
same state that precedes both a put-down.1 and a stack.1 tran-
sition.

zero

zero-1

gripper
empty

holding
[block]

pick_up.0

unstack.0
put_down.0
stack.0

Block

Top of Block

Bottom of Block

underneath
[block] clear

unstack.2
stack.2 held

pick_up.1

unstack.1
put_down.1

stack.1

on
table heldpick_up.1

put_down.1 on top of
[block]stack.1

unstack.1

Figure 1: State machines learnt by LOCM in the Blocksworld
planning domain. State labels are manually annotated to aid
comprehension.

The output formalism of LOCM represents each object
type as one or more parameterised DFAs. Figure 1 shows
the output DFAs of LOCM for the Blocksworld domain. In
this figure, we have manually annotated the state names in
order to highlight the meanings of each state. The edges in
the LOCM state machines represent object transitions, where
each transition is labelled with an action name and a parame-
ter position.

LOCM works in two stages: firstly to encode the structure
of the DFAs, secondly to detect the state parameters.

Blocks are the only type of object in Blocksworld, and are
represented by the two state machines at the bottom of Fig-
ure 1. Informally, these machines can be seen to represent
what is happening above and below the block, respectively. In
each planning state, a block is represented by two DFA states
(for example, a block placed on the table with nothing above
it would be represented by the ‘clear’ and ‘on table’ DFA
states). Each of the block DFAs transition simultaneously
when an action is performed, so when the previously dis-
cussed block is picked up from the table (transition pick up.1)
both the top and bottom machines move to the ‘held’ state.

The machine at the top of Figure 1 is a special machine
known as the zero machine (this refers to an imaginary ze-
roth parameter in every action) and this machine can be seen
as encoding the structural regularities of the input action se-
quences. In the case of Blocksworld, the zero machine en-
codes the behaviour of the gripper that picks up and puts
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, describing the movements of a rook
in chess

down each block. Relationships between objects are repre-
sented by state parameters. As an example, in the ‘Bottom of
Block’ machine, the state labelled ‘on top of’ has a block state
parameter which represents the block directly underneath the
current block.

2.2 The SGRL System
The SGRL approach [Björnsson, 2012] models the move-
ments of each piece type in the game individually using a
deterministic finite automata (DFA). One can think of the
DFA representing a language where each word describes a
completed move (or piece movement pattern) on the board
and where each letter in the word —represented by a triplet
(�x,�y, on)— describes an atomic movement. The triplet
is read in the context of a game board position and a current
square, with the first two coordinates telling relative board
displacement from the current square (file and rank, respec-
tively) and the third coordinate telling the content of the re-
sulting relative square (the letter e indicates an empty square,
w an own piece, and p an opponent’s piece). For example,
(0 1 e) indicates a piece moving one square up the board to
an empty square, and the word (0 1 e) (0 1 e) (0 1 p) a move-
ment where a piece steps three squares up (over two empty
squares) and captures an opponent’s piece. Figure 2 shows an
example DFA describing the movements of a rook.

There are pros and cons with using the DFA formalism for
representing legitimate piece movements. One nice aspect
of the approach is that well-known methods can be used for
the domain acquisition task, which is to infer from observed
piece movement patterns a consistent DFA for each piece type
(we are only concerned with piece movements here; for de-
tails about how terminal conditions and other model aspects
are acquired we refer to the original paper). Another impor-
tant aspect, especially for a game-playing program, is that
state-space manipulation is fast. For example, when generat-
ing legal moves for a piece the DFA is traversed in a depth-
first manner. On each transition the label of an edge is used

to find which square to reference and its expected content. If
there are no matching edges the search backtracks. A transi-
tion into a final DFA state s generates a move in the form of
a piece movement pattern consisting of the edge labels that
were traversed from the start state to reach s. A special pro-
vision is taken to detect and avoid cyclic square reference in
piece-movement patterns.

Unfortunately, simplifying compromises were necessary in
SGRL to allow the convenient domain-learning mechanism
and fast state-space manipulation. One such is that moves are
not allowed to have side effects, that is, a piece movement
is not allowed to affect other piece locations or types (with
the only exception that a moving piece captures the piece it
lands on). These restrictions for example disallow castling,
en-passant, and promotion moves in chess. We now look at
how these restrictions can be relaxed.

3 The GRL System
In this section, we introduce a boardgame rule learning sys-
tem that combines the strengths of both the SGRL and LOCM
systems. One strength of the SGRL rule learning system is
that it uses a relative coordinate system in order to generalise
the input gameplay traces into concise DFAs. A strength of
the LOCM system is that it can generalise relationships be-
tween objects that undergo simultaneous transitions.

One feature of the SGRL input language is that it represents
the distinction between pieces belonging to the player and
the opponent, but not the piece identities. This provides a
trade-off between what it is possible to model in the DFAs and
the efficiency of learning (far more games would have to be
observed to learn if the same rules had to be learnt for every
piece that can be moved over or taken, and the size of the
automata learnt would be massive). In some cases, however,
the identities of the interacting pieces are significant in the
game.

We present the GRL system that enhances the SGRL system
in such a way as to allow it to discover a restricted form of
side-effects of actions. These side-effects are the rules that
govern piece-taking, piece-production and composite moves.
SGRL allows for limited piece-taking, but not the types such
as in checkers where the piece taken is not on the destination
square of the piece moving. Piece-production (for example,
promotion in chess or adding men at the start of nine mens
morris) is not at all possible in SGRL. Composite moves, such
as castling in chess or arrow firing in Amazons also cannot be
represented in the SGRL DFA formalism.

3.1 The GRL Algorithm
The GRL algorithm can be specified in three steps:

1. Perform an extended SGRL analysis on the game traces
(we call this extended analysis SGRL+). SGRL is ex-
tended by adding additional vocabulary to the input lan-
guage that encode the addition and removal of pieces
from the board. Minor modifications have to be made
to the consistency checks of SGRL in order to allow this
additional vocabulary.

2. Transform the game traces and the SGRL+ output into
LOCM input plan traces, one for each game piece.
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Within this step, a single piece move includes everything
that happens from the time a player picks up a piece un-
til it is the next player’s turn. For example, a compound
move will have all of its steps represented in the plan
trace.

3. Use the LOCM system to generate a planning domain
model for each piece type. These domain models en-
code how a player’s move can progress for each piece
type. Crucially, unlike the SGRL automata, the learn do-
mains refer to multiple piece types, and the relationships
between objects through the transitions.

The output of this procedure will be a set of planning
domains (one for each piece) which can generate the legal
moves of a board game. By specifying a planning problem
with the current board as the initial state, then enumerating
the state space of the problem provides all possible moves for
that piece. We now describe these three stages in more detail.

3.2 Extending SGRL Analysis for Piece Addition
and Deletion

The first stage of GRL is to perform an extended version of
the SGRL analysis. The input alphabet has been extended
in order to include vocabulary to encode piece addition and
removal. To this end, we add the following two letters as
possible commands to the DFA alphabet:

1. The letter ‘a’ which means that the piece has just been
added at the specified cell (the relative coordinates of
this move will always be (0, 0)). The piece that is picked
up now becomes the piece that is ‘controlled’ by the sub-
sequent micro-moves.

2. The letter ‘d’ which means that the square has a piece
underneath it which is removed from the game. This
is to model taking pieces in games like peg solitaire or
checkers.

The order in which these new words in the vocabulary are
used is significant. An ‘a’ implies that the piece underneath
the new piece remains in place after the move, unless it is
on the final move of the sequence of micro-moves (this is
consistent with the more limited piece-taking in SGRL, where
pieces are taken only at the end of a move, if the controlled
piece is another piece’s square). For example, the following
sequences both describe white pawn promotion in chess:
(0 1 e) (0 0 a) (0 0 d)
(0 1 e) (0 0 a)

Adding this additional vocabulary complicates the SGRL
analysis in two ways: firstly in the definition of the game
state, and secondly in the consistency checking of candidate
DFAs. There is no issue when dealing with the removal of
pieces and state definitions. There is, however, a small issue
when dealing with piece addition. A move specified in SGRL
input language is in the following form:
(12 (0 1 e) (0 0 a) (0 1 e))

This move specifies that the piece on square 12 moves ver-
tically up a square, then a new piece piece appears (and be-
comes the controlled piece), which subsequently moves an-
other square upwards. The issue is that for each distinct

move, in SGRL, the controlled piece is defined by the square
specified at the start of the move (in this case square 12). If
a piece appears during a move, then SGRL+ needs to have
some way of knowing which piece has appeared, in order to
add this sequence to the prefix tree of the piece type. To miti-
gate this problem, we require all added pieces to be placed in
the state before they are added, and as such they can now be
readily identified. This approach allows us to learn the DFAs
for all piece types, including piece addition.

The consistency algorithm of SGRL verifies whether a hy-
pothesised DFA is consistent with the input data. One part of
this algorithm that is not discussed in prior work is the gen-
erateMoves function, that generates the valid sentences (and
hence the valid piece moves) of the state machine. There are
two termination criteria for this function: firstly the dimen-
sions of the board (a piece cannot move outside of the con-
fines of the board), secondly on revisiting squares (this is im-
portant in case cycles are generated in the hypothesis genera-
tion phase). This second case is relaxed in GRL slightly since
squares may be visited more than once due to pieces appear-
ing and / or disappearing. However, we still wish to prevent
looping behaviour, and so instead of terminating when the
same square is visited, we terminate when the same square is
visited in the same state in the DFA.

With these two changes to SGRL analysis we have provided
a means to representing pieces that appear and that remove
other pieces from the board. However, the state machines do
not tell us how the individual piece movement, additions and
removals combine to create a complete move in the game.
For this task, we employ use of the LOCM system, in order
to learn the piece-move interactions.

3.3 Converting to LOCM Input
We use the LOCM system to discover relationships between
the pieces and the squares, and to do this we need to con-
vert the micro-moves generated by the SGRL+ DFAs to se-
quences of actions. To convert these, we introduce the fol-
lowing action templates (where X is the name of one of the
pieces):
appearX ( square )
removeX ( square )
moveX ( squareFrom, squareTo )
moveOverX ( squareFrom, squareVia, squareTo )
moveAndRemoveX ( squareFrom, squareTo )
moveAndRemoveX ( squareFrom, squareVia, squareTo )

These action templates mirror the input language of the ex-
tended SGRL+ system detailed above. Each plan that is pro-
vided as input to LOCM is a sequence of micro-moves that
define an entire player’s turn. When LOCM learns a model for
each piece type, the interactions between the pieces and the
squares they visit are encoded in the resultant domain model.

The input actions, therefore, encode the entire (possibly
compound and with piece-taking side-effects) move. As an
example from the Amazons1 game, the following plan trace

1Amazons is a two-player game played on a 10 ⇥ 10 board, in
which each player has four pieces. On each turn, a player moves a
piece as the queen moves in chess, before firing an arrow from the
destination square, again in the move pattern of the queen in chess.
The final square of the arrow is then removed from the game. The
loser is the first player unable to make a move.
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Figure 3: The LOCM State Machines learnt for the Queen
piece in Amazons. The zero machine at the top of the figure
shows the higher-level structure of the Queen’s move. The
Queen moves for a certain number of moves, then an arrow
appears, and the arrow moves for a certain number of moves.

may be generated from the example micro-move sequence,
meaning a queen is moved from A1 to B1, and then an arrow
appears, and is fired to square C1:
Micro-move Sequence:
(0 (1 0 e) (0 0 a) (1 0 e))

Equivalent Plan Trace:
moveQueen ( A1, B1 )
appearArrow ( B1 )
moveArrow ( B1, C1 )

In all plan traces for the Queen piece in the Amazons game,
the destination square of the Queen will always be the square
in which the Arrow appears, and from which the Arrow piece
begins its movement. Once the LOCM analysis is complete,
this relationship is detected, and the induced planning domain
will only allow arrows to be fired from the square that the
queen moves to.

Figure 3 shows the actual LOCM state machines learnt for
the Queen piece from a collection of game traces. The top
state machine represents the zero machine, which describes
the general plan structure. The machine underneath repre-
sents one of the squares on the board. The parameters of
the zero machine represent the current square underneath the
controlled piece. As can be seen from the generated PDDL
action for appear a (shown in Figure 4), this parameter en-
sures that the arrow appears at the same location that the
queen ended its move on. It also ensures that the moves are
sequenced in the correct way: the Queen piece moves, the
Arrow piece appears and finally the Arrow piece moves to its
destination. The machine at the bottom of Figure 3 encodes
the transitions that a square on the board goes through during
a Queen move. Each square undergoes a similar transition
path, with two slightly different variants, and to understand
these transitions it is important to see the two options of what
happens on a square once a queen arrives there. The first op-
tion is that the Queen transits the square, moving on to the
next square. The second option is that the Queen ends its
movement; in this case, the Arrow appears, before transiting
the square. These two cases are taken into account in the two
different paths through the state machine.

As another example, consider the game of Checkers. The
state machines generated by LOCM for the Pawn piece type

(:action appear_a
:parameters (?Sq1 - sq)
:precondition
(and (Q_Control ?Sq1)

(Q_Occupied ?Sq1))
:effect
(and (A_Control ?Sq1)

(not (Q_Control ?Sq1))
(A_Occupied ?Sq1)
(not (Q_Occupied ?Sq1))))

Figure 4: The PDDL Action for appear a, representing the
arrow appearing in the Amazons game.

are shown in Figure 5. There are two zero machines in this
example, which in this case means that LOCM2 analysis was
required to model the transition sequence, and there are sep-
arable behaviours in the move structure. These separable be-
haviours are the movement of the Pawn itself and of the King,
if and when the Pawn is promoted. The top machine models
the alternation between taking a piece and moving on to the
next square for both Pawns and Kings, the bottom machine
ensures that firstly a King cannot move until it has appeared,
and secondly that a Pawn cannot continue to move once it has
been promoted.

3.4 Move Generation
We now have enough information to generate possible moves
based on a current state. The GRL automata can be used in
order to generate moves, restricted by the LOCM state ma-
chines, where the LOCM machines define the order in which
the pieces can move within a single turn.

The algorithm for generating moves is presented here as
Algorithm 1. The algorithm takes as input an SGRL+ state, a
LOCM state and a square on the board. A depth-first search
is then performed over the search space, in order to generate
all valid traces. A state in this context is a triple of a board
square, an SGRL+ piece state and a LOCM state. Lines 2 to
3 define the termination criteria (a state has already been vis-
ited), lines 4 to 5 define when a valid move has been defined
(when each of the SGRL+ and LOCM DFAs are in a terminal
state), and lines 6 to 7 define the recursion (in these lines, we
refer to a state as being consistent. Consistency in this sense
means that the state is generated by a valid synchronous tran-
sition in both the SGRL+ and LOCM DFAs.

Algorithm 1 Function to generate legal moves for a player
from a combination of SGRL+ and LOCM DFAs.

1: function GenerateMoves(sq,SL,SP)
2: if Visited hsq, SL, SPi then
3: return
4: if terminal(SL) and terminal(SP) then
5: add the current micro-move path to moves.
6: for all consistent next states hsq0, S0

L

, S

0
P

i do
7: GenerateMoves(sq0, S0L,S0P)

This completes the definition of the GRL system: an ex-
tended SGRL learns DFAs for each piece type, the LOCM
system learns how these piece types combine to create entire
moves, and then the move generation algorithm produces the
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Figure 5: The LOCM State Machines learnt for the Pawn
piece in the game of Checkers. The state machine incorpo-
rates the possibility of the Pawn being promoted into a King,
and then subsequently can take other pieces.

valid moves in any given state. Next, we provide an evalua-
tion of GRL, and detail the cost of each element of the system.

4 Empirical Evaluation
In this section, we provide an evaluation of the GRL system.
In order to perform this evaluation, we learn the rules of Ama-
zons, Peg Solitaire and Checkers. We also provide evalua-
tion for the three games Breakthrough, Breakthrough Check-
ers, and Breakthrough Chess as used in the SGRL evaluation
[Björnsson, 2012] in order to demonstrate that performance
is not adversely affected due to the changes in GRL.We re-
port on the time taken in the extended SGRL+ phase, and
the LOCM phase, to show the balance of time taken in each
phase. We generate two forms of game traces for each game:
one has a single move per turn (for these we generate 1000
game traces) and the other enumerates all possible moves (for
these we generate 50 game traces). This method of evaluation
is consistent with that chosen in the prior evaluation of GRL.
All experiments are run on Mac OSX 10.10, running on an
Intel i7 4650U CPU, with 8GB system RAM.

Table 1 shows the results of GRL on our benchmark prob-
lems. We show the time taken for each element of GRL
to learn its model. We report both the time taken to learn
the model for the first and second players (reported under
‘Player1’ and ‘Player2’). In the case of Peg Solitaire, there
is only one player, which explains the missing data. The
missing data in the LOCM element for Amazons A piece is
because an arrow piece in Amazons never starts a move it-
self and hence has no plan trace data. We first observe that
the Breakthrough, Breakthrough Checkers and Breakthrough
Chess results are not significantly different to the results for
SGRL. Therefore the modifications made to the SGRL algo-
rithm are not adversely affecting performance. We do not
report LOCM time here, since these games do not require the
LOCM analysis, as SGRL+ is sufficient to represent them. It
is notable that the time taken to learn the LOCM models is
significantly larger than the time to learn the SGRL+ individ-
ual piece models. The main cause of this difference is that the
input plan traces are for every turn of the game, rather than
the entire game trace. Because of this, LOCM has 25,000
input traces for the Queen piece in Amazons and 11,000 for

Game Piece Element Player1 Player2

Amazons Q SGRL+ 8.1 35.2
LOCM 20.9 30.0

A SGRL+ 9.3 10.8
LOCM – –

Checkers P SGRL+ <0.01 <0.01
LOCM 260.4 275.3

K SGRL+ <0.01 <0.01
LOCM 52.9 47.0

Peg Solitaire P SGRL+ <0.01 –
LOCM 8.8 –

BT P SGRL+ <0.01 <0.01

CheckerBT P SGRL+ 0.16 0.17

ChessBT P SGRL+ <0.01 <0.01
K SGRL+ <0.01 <0.01
N SGRL+ <0.01 <0.01
B SGRL+ 3.3 3.4
R SGRL+ 3.9 3.8
Q SGRL+ 12.3 12.5

Table 1: Learning time in seconds to learn models for each of
the pieces in the problem set with all moves known. (Using
all moves only affects the time for the SGRL+ element, as
LOCM does not accept input when all moves are known).

the Pawn piece in Checkers, for example. The time required
to parse and analyse this number of plans is necessarily time
consuming.

Table 2 shows the results of learning when only a single
move per turn is known. Learning times are increased, as it
takes longer to find consistent DFAs in the SGRL+ phase.
Note that on several occasions, SGRL+ returns incorrect so-
lutions. In these cases, there is simply insufficient input data.
GRL is still effective in the majority of cases, however, and
does not degrade the performance of SGRL on the previous
game data.

5 Related Work
Within the planning literature there are several domain model
acquisition systems, each with varying levels of detail in their
input observations. The Opmaker2 system [McCluskey et al.,
2009; Richardson, 2008] learns models in the target language
of OCL [McCluskey and Porteous, 1997] and requires a par-
tial domain model, along with example plans as input. The
ARMS system [Wu et al., 2007], can learn STRIPS domain
models with partial or no observation of intermediate states in
the plans, but does at least require predicates to be declared.
The LAMP system [Zhuo et al., 2010] can target PDDL rep-
resentations with quantifiers and logical implications.

As for domain model acquisition in boardgames, an ILP
approach exists for inducing chess variant rules from a set of
positive and negative examples using background knowledge
and theory revision [Muggleton et al., 2009]. Furthermore,
[Kaiser, 2012] presents a system that learns games such as
Connect4 and Breakthrough from video demonstrations us-
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Game Piece Element Player1 Player2

Amazons Q SGRL+ 51.2* 54.9
LOCM 20.9 30.0

A SGRL+ 86.2* 34.6*
LOCM – –

Checkers P SGRL+ <0.01 <0.01
LOCM 260.4 275.3

K SGRL+ <0.01 <0.01
LOCM 52.9 47.0

Peg Solitaire P SGRL+ <0.01 <0.01
LOCM 8.8 –

BT P SGRL+ <0.01 <0.01

CheckerBT P SGRL+ 1.2* 3.1*

ChessBT P SGRL+ <0.01 <0.01
K SGRL+ <0.01 <0.01
N SGRL+ <0.01 <0.01
B SGRL+ 43.2 41.0
R SGRL+ 52.4 50.0
Q SGRL+ 145.3 140.4

Table 2: Learning time in seconds to learn models for each of
the pieces in the problem set with only a single move known
per state. Results marked with a (*) returned an incorrect
DFA.

ing minimal background knowledge. Rosie [Kirk and Laird,
2013] is an agent implemented in Soar that learns game rules
(and other concepts) for simple board games via restricted in-
teractions with a human. As for general video-game playing,
a neuro-evolution algorithm showed good promise playing a
large set of Atari 2600 games using little background knowl-
edge [Hausknecht et al., 2014].

6 Conclusions and Future Work
In this work, we presented a system capable of inducing the
rules of more complex games than the current state-of-the-
art system. This can help in both constructing the rules of
games, or replacing the current move generation routine of
an existing general game playing system (for fitting games).
GRL improves SGRL by allowing piece addition, removal and
structured compound moves. This was achieved by combin-
ing two techniques for domain-model acquisition, one rooted
in game playing and the other in autonomous planning.

However, there remain interesting classes of board game
rule that cannot be learnt by GRL. One interesting rule class
is that of a state-bound movement restriction. Games that ex-
hibit this behaviour allow only a subset of moves to occur in
certain contexts: examples of this are check in chess (where
only the subset of moves that exit check are allowed) and
the compulsion to take pieces in certain varieties of check-
ers (thus restricting the possible moves to the subset that take
pieces when forced). An approach to learning these restric-
tions could be developed given knowledge of all possible
moves at each game state in the game.

Learning the termination criteria of a game is also an im-

portant step, if the complete set of rules of a board game
are to be learnt. This requires learning properties of indi-
vidual states, rather than state transition systems. However,
many games have termination criteria of the type that only
one player (or no players) can make a move. For this class
of game, and others based on which moves are possible, it
should be possible to extend the GRL system to learn how to
detect terminal states.
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