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Abstract
While Monte Carlo tree search (MCTS) methods
have shown promise in a variety of different board
games, more complex video games still present
significant challenges. Recently, several modifica-
tions to the core MCTS algorithm have been pro-
posed with the hope to increase its effectiveness on
arcade-style video games. This paper investigates
of how well these modifications perform in general
video game playing using the general video game AI
(GVG-AI) framework and introduces a new MCTS
modification called UCT reverse penalty that penal-
izes the MCTS controller for exploring recently vis-
ited children. The results of our experiments show
that a combination of two MCTS modifications can
improve the performance of the vanilla MCTS con-
troller, but the effectiveness of the modifications
highly depends on the particular game being played.

1 Introduction
Game-based AI competitions have become popular in bench-
marking AI algorithms [22]. However, typical AI competi-
tions focus only on one type of game and not on the ability
to play a variety of different games well (i.e. the controllers
only work on one particular game / game type / problem). In
this context, an important question is if it is possible to create
controllers that can play a variety of different types of games
with little or no retraining for each game.

The general video game AI (GVG-AI) competition explores
this challenge. To enter the competition, a controller has
to be implemented in the GVG-AI framework (available at:
http://www.gvgai.net/). The framework contains two sets with
ten different games in each set. The games are replicas of
popular arcade games that have different winning conditions,
scoring mechanisms, sprites and player actions. While play-
ing a game the framework gives the controller a time limit
of 40 milliseconds to return the next action. If this limit is
exceeded, the controller will be disqualified. The competi-
tion and framework is designed by a group of researchers at
University of Essex, New York University and Google Deep-
Mind [18; 17].

The Monte Carlo tree search (MCTS) algorithm, performs
well in many types of games [4; 9; 10; 8]. MCTS was first
applied successfully to the Asian board game Go, for which it
rapidly redefined the state of the art for the game. Whereas

previous controllers had been comparable to human begin-
ners, MCTS-based controllers were soon comparable to in-
termediate human players [10]. MCTS is particularly strong
in games with relatively high branching factors and games
in which it is hard to develop a reliable state value estima-
tion function. Therefore, MCTS-based agents are generally
the winners in the annual general game playing competition,
which is focused on board games and similar discrete, turn-
based perfect-information games [7; 1].

Beyond board games, MCTS has also been applied to ar-
cade games and similar video games. In particular, the algo-
rithm has performed relatively well in Ms. Pac-Man [13] and
Super Mario Bros [8], though not better than the state of the
art. In the general video game playing competition, the best
agents are generally based on MCTS or some variation thereof
[16; 17]. However, this is not to say that these agents perform
very well – in fact, they perform poorly on most games. One
could note that arcade-like video games present a rather dif-
ferent set of challenges to most board games, one of the key
differences being that random play often does not lead to any
termination condition.

The canonical form of MCTS was invented in 2006, and
since then many modifications have been devised that per-
form more or less well on certain types of problems. Certain
modifications, such as rapid action value estimation (RAVE)
perform very well on games such as Go [6] but show limited
generalization to other game types. The work on Super Mario
Bros mentioned above introduced several modifications to the
MCTS algorithm that markedly improved performance on that
particular game [8]. However, an important open question is
if those modifications would help in other arcade-like video
games as well?

The goal of this paper is to investigate how well certain pre-
viously proposed modifications to the MCTS algorithm per-
form in general video game playing. The “vanilla MCTS” of
the GVG-AI competition framework is our basis to test differ-
ent modifications to the algorithm. In addition to comparing
existing MCTS modifications, this paper presents a new mod-
ification called reversal penalty, which penalizes the MCTS
controller for exploring recently visited positions. Given that
the games provided with the GVG-AI framework differ along
a number of design dimensions, we expect this evaluation to
give a better picture of the capabilities of our new MCTS vari-
ants than any one game could do.

The paper is structured as follows: Section 2 describes re-
lated work in GVG, MCTS and use of MCTS. Section 3 de-
scribes the GVG-AI framework and competition and how we
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used it. Section 4 explains the MCTS algorithm, followed by
the tested MCTS modifications in Section 5. Section 6 details
the experimental work and finally Section 7 discuss the results
and describes future work.

2 Related work
2.1 General Video Game Playing
The AAAI general game playing competition by Stanford
Logic Group of Stanford University [7] is one of the oldest
and most well-known general game playing frameworks. The
controllers submitted for this competition receive descriptions
of games at runtime, and use the information to play these
games effectively. The controllers do not know the type or
rules of the game beforehand. In all recent iterations of the
competition, different variants of the MCTS algorithm can be
found among the winners of the competition.

The general video game playing competition is a recent ad-
dition to the set of game competitions [18; 17]. Like the Stan-
ford GGP competition, submitted controllers are scored on
multiple unseen games. However, unlike the Stanford GGP
competition the games are arcade games inspired by 1980’s
video games, and the controllers are not given descriptions of
the games. They are however given forward models of the
games. The competition was first run in 2014, and the sample
MCTS algorithm reached third place. In first and second place
were MCTS-like controllers, i.e. controllers based on the gen-
eral idea of stochastic tree search but implemented differently.
The sample MCTS algorithm is a vanilla implementation and
is described in Browne et al. [2]. The iterations of the algo-
rithm rarely reach a terminal state due to the time constraints
in the framework. The algorithm evaluates the states by giv-
ing a high reward for a won game and a negative reward for a
lost game. If the game was neither won or lost, the reward is
the game’s score. The play-out depth of the algorithm is ten
moves.

2.2 MCTS Improvements
A number of methods for improving the performance of
MCTS on particular games have been suggested since the in-
vention of the algorithm [19; 2]. A survey of key MCTS mod-
ifications can be found in Browne et al. [2]. Since the MCTS
algorithm has been used in a wide collection of games, this
paper investigates how the different MCTS modifications per-
form in general video game playing.

Some of these strategies to improve the performance of
MCTS were deployed by Jacobsen et al. [8] to play Super
Mario Bros. The authors created a vanilla MCTS controller
for a Mario AI competition, which they augmented with ad-
ditional features. To reduce cowardliness of the controller
they increased the weight for the largest reward. Addition-
ally, macro actions [15; 8] were employed to make the search
go further without increasing the number of iterations. Partial
expansion is another technique to achieve a similar effect as
macro actions. These modifications resulted in a very good
performing controller for the Mario game. It performed better
than Robin Baumgarten’s A* version in noisy situations and
performed almost as well in normal playthroughs.

Pepels et al. [13] implemented five different strategies to
improve existing MCTS controllers: A variable depth tree,
playout strategies for the ghost-team and Pac-Man, long-term
goals in scoring, endgame tactics and a last-good-reply policy

for memorizing rewarding moves. The authors achieved an
average performance gain of 40962 points, compared to the
CIG’11 Pac-Man controller.

Chaslot et al. [3] proposed two strategies to enhance MCTS:
Progressive bias to direct the search according to possibly
time-expensive heuristic knowledge and progressive unprun-
ing, which reduces the branching factor by removing children
nodes with low heuristic value. By implementing these tech-
niques in their Go program, it performed significantly better.

An interesting and well-performing submission to the gen-
eral game playing competition is Ary, developed by Méhat et
al. [11]. This controller implements parallelization of MCTS,
in particular a “root parallel” algorithm. The idea is to per-
form individual Monte Carlo tree searches in parallel on dif-
ferent CPUs. When the framework asks for a move, a mas-
ter component chooses the best action among the best actions
suggested by the different trees.

Perez et al. [16] used the GVG-AI framework and pro-
posed augmentations to deal with some of the shortcomings
of the sample MCTS controller. MCTS was provided with a
knowledge base to bias the simulations to maximize knowl-
edge gain. The authors use fast evolutionary MCTS, in which
every roll-out evaluates a single individual of the evolutionary
algorithm and provides the reward calculated at the end of the
roll-out as a fitness value. They also defined a score function
that uses a concept knowledge base with two factors: curiosity
and experience. The new controller was better in almost every
game compared to the sample MCTS controller. However, the
algorithm still struggled in some cases, for example in games
in which the direction of a collision matters.

This paper uses the GVG-AI framework and builds on the
sample MCTS controller. The next section will describe the
GVG-AI framework in more detail.

3 GVG-AI Competition & Framework
The GVG-AI competition tries to encourage the creation of
AI for general video game playing. The controller submit-
ted to the competition webpage is tested in a series of un-
known games, thereby limiting the possibility of applying any
specific domain knowledge. The competition is held as part
of several international conferences since 2014. Part of the
GVG-AI competition is the video game description language
(VGDL) [5; 21] that describes games in a very concise man-
ner; all of the games used in the competition are encoded in
this language. Examples are available from the GVG-AI web-
site.

Users participate in the competition by submitting Java
code defining an agent. At each discrete step of the game sim-
ulation, the controller is supposed to provide an action for the
avatar. The controller has a limited time of 40ms to respond
with an action. In order for the controller to simulate possible
moves, the framework provides a forward model of the game.
The controller can use this to simulate the game for as many
ticks as the time limit allows.

For a more detailed explanation of the framework, see the
GVG-AI website or the competition report [17].

4 Monte Carlo Tree Search
Monte Carlo tree search (MCTS) is a statistical tree search al-
gorithm that often provides very good results in time restricted
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The CIG 2014 Training Game Set
Aliens(G 1) In this game you control a ship at the bottom of the screen shooting aliens that come

from space. You better kill them all before they reach you! Based on Space Invaders.
Boulderdash(G 2) Your objective here is to move your player through a cave, collecting diamonds, before

finding the exit. Beware of enemies that hide underground!
Butterflies(G 3) You are a happy butterfly hunter. This is how you live your life, and you like it. So be

careful, you don’t want them to become extinct!
Chase(G 4) You like to chase goats. And kill them. However, they usually don’t like you to do it, so

try not to get caught doing that!
Frogs(G 5) Why did the frog cross the road? Because there is a river at the other side. What would

you cross the river as well? Because your home is there, and it’s cosy.
Missile Command(G 6) Some missiles are being shot to cities in your country, you better destroy them before

they reach them!
Portals(G 7) You control an avatar that needs to find the exit of a maze, but moving around is not so

simple. Find the correct doors that take you to the exit!
Sokoban(G 8) In this puzzle you must push the boxes in the maze to make them fall through some

holes. Be sure you push them properly!
Survive Zombies(G 9) How long can you survive before you become their main course for dinner? Hint:

zombies don’t like honey (didn’t you know that?).
Zelda(G 10) Get your way out of the dungeon infested with enemies. Remember to find the key that

opens the door that leads you to freedom!

Table 1: The game descriptions of the training set from the official competition site.

The CIG 2014 Evaluation Game Set
Camel Race(G 1) The avatar must get to the finish line before any other camel does.
Digdug(G 2) The avatar must collect all gems and gold coins in the cave, digging its way through it. There are also

enemies in the level that kill the player on collision with him. Also, the player can shoot boulders by
pressing USE two consecutive time steps, which kill enemies.

Firestorms(G 3) The avatar must find its way to the exit while avoiding the flames in the level, spawned by some
portals from hell. The avatar can collect water in its way. One unit of water saves the avatar from one
hit of a flame, but the game will be lost if flames touch the avatar and he has no water.

Infection(G 4) The avatar can get infected by colliding with some bugs scattered around the level, or other animals
that are infected (orange). The goal is to infect all healthy animals (green). Blue sprites are medics
that cure infected animals and the avatar, but don’t worry, they can be killed with your mighty sword.

Firecaster(G 5) The avatar must find its way to the exit by burning wooden boxes down. In order to be able to shoot,
the avatar needs to collect ammunition (mana) scattered around the level. Flames spread, being able
to destroy more than one box, but they can also hit the avatar. The avatar has health, that decreases
when a flame touches him. If health goes down to 0, the player loses.

Overload(G 6) The avatar must reach the exit with a determined number of coins, but if the amount of collected
coins is higher than a (different) number, the avatar is trapped when traversing marsh and the game
finishes. In that case, the avatar may kill marsh sprites with the sword, if he collects it first.

Pacman(G 7) The avatar must clear the maze by eating all pellets and power pills. There are ghosts that kill the
player if he hasn’t eaten a power pill when colliding (otherwise, the avatar kills the ghost). There are
also fruit pieces that must be collected.

Seaquest(G 8) The player controls a submarine that must avoid being killed by animals and rescue divers taking
them to the surface. Also, the submarine must return to the surface regularly to collect more oxygen,
or the avatar would lose. Submarine capacity is for 4 divers, and it can shoot torpedoes to the animals.

Whackamole(G 9) The avatar must collect moles that pop out of holes. There is also a cat in the level doing the same. If
the cat collides with the player, this one loses the game.

Eggomania(G 10) There is a chicken at the top of the level throwing eggs down. The avatar must move from left to right
to avoid eggs breaking on the floor. Only when the avatar has collected enough eggs, he can shoot at
the chicken to win the game. If a single egg is broken, the player loses the game.

Table 2: The game descriptions of the evaluation set from the official competition site.
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situations. It constructs a search tree by doing random play-
outs, using a forward model, and propagates the results back
up the tree. Each iteration of the algorithm adds another node
to the tree and can be divided into four distinct parts. Figure 1
depicts these four steps. The first step is the selection step,
which selects the best leaf candidate for further expansion of
the tree. Starting from the root, the tree is traversed down-
wards, until a leaf is reached. At each level of the tree the best
child node is chosen, based on the upper confidence bound
(UCB) formula (described below). When a leaf is reached,
and this leaf is not a terminal state of the game, the tree is ex-
panded with a single child node from the action space of the
game.

From the point of the newly expanded node, the game is
simulated using the forward model. The simulation consist
of doing random moves starting from this game state, until
a terminal state is reached. For complex or, as in our case,
time critical games, simulation until a terminal state is often
unfeasible. Instead the simulation can be limited to only for-
ward the game a certain amount of steps. After the simula-
tion is finished, the final game state reached is evaluated and
assigned a score. The score of the simulation is backpropa-
gated up through the parents of the tree, until the root node is
reached. Each node holds a total score, which is the sum of all
backpropagated scores, and a counter that keeps track of the
number of times the score was updated; this counter is equal
to the number of times the node was visited.

4.1 Upper Confidence Bound - UCB
The UCB formula selects the best child node at each level
when traversing the tree. It is based on the bandit problem, in
which it selects the optimal arm to pull, in order to maximize
rewards. When used together with MCTS it is often referred
to as upper confidence bounds applied to trees, or UCT [2]:

UCT = Xj + 2Cp

√
2 ln n

nj
,

where XJ is the average score of child j. n is the number
of times the parent node was visited and nj is the number
of times this particular child was visited. CP is a constant
adjusting the value of the second term. At each level of the the
selection step, the child with the highest UCT value is chosen.

4.2 Exploration vs. Exploitation
The two terms of the UCT formula can be described as the bal-
ance between exploiting nodes with previously good scores,
and exploring nodes that rarely have been visited [2].

The first term of the equation, XJ , represents the exploita-
tion part. It increases as the backpropagated scores from its
child nodes increases.

The second term,
√

2ln(n)
nj

, increases each time the parent
node has been visited, but a different child was chosen. The
constant Cp simply adjust the contribution of the second term.

4.3 Return Value
When the search is halted, the best child node of the root is
returned as a move to the game. The best child can either
be the node most visited, or the one with the highest average
value. This will often, but not always, be the same node [2].

Figure 1: The main steps in the Monte-Carlo Tree Search.

4.4 Algorithm Characteristics
Anytime
One of the strengths of MCTS in a game with very limited
time per turn, is that the search can be halted at anytime, and
the currently best move can be returned.

Non-heuristic
MCTS only needs a set of legal moves and terminal conditions
to work. This trait is very important in the GVG-AI setting,
where the games are unknown to the controller. If a playout
from any given state has a high probability of reaching a ter-
minal state (win or lose), no state evaluation function needs
to be used; as this is not the case in general for games in the
GVG-AI set, a state evaluator is necessary.

Asymmetric
Compared to algorithms like minimax, MCTS builds an asym-
metric search tree. Instead of mapping out the entire search
space, it focuses efforts on previously promising areas. This
is crucial in time critical application.

5 Modifications to MCTS
Here we list the particular modifications to the basic MCTS
algorithm that we have investigated in this paper.

5.1 MixMax backups
Mixmax increases the risk-seeking behavior of the algorithm.
It modifies the exploitation part of UCT, by interpolating be-
tween the average score and the maximum score:

Q · maxScore + (1−Q) ·Xj ,

where Q is a value in the range [0, 1]. A good path of actions
will not greatly affect the average score of a node, if all other
children lead to bad scores. By using mixmax the good path
contributes more to the average than the bad ones, thereby
reducing the defensiveness of the algorithm. This modifica-
tion was proposed in response to a problem observed when
applying MCTS to Super Mario Bros, where Mario would act
cowardly and e.g. never initiate a jump over a gap as most pos-
sible paths would involve falling into the gap. Mixmax back-
ups made Mario considerably bolder in the previously cited
work [8].

For the experiments with mixmax in this paper, the Q value
was set to 0.1. The Q value was determined through prior
experimentation.
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5.2 Macro Actions
As stated previously, each action has to be decided upon in
a very short time-span. This requirement can often lead to
search tree with a limited depth, and as such only the nearest
states are taken into consideration when deciding on the cho-
sen action. Macro actions enable a deeper search, at the cost
of precision. Powley et al. have previously shown that this is
an acceptable tradeoff in some continuous domains [20].

Macro actions consists of modifying the expansion process,
such that each action is repeated a fixed number of times be-
fore a child node is created. That is, each branch corresponds
to a series of identical actions. This process builds a tree that
reaches further into the search space, but using coarser paths.

5.3 Partial Expansion
A high branching factor relative to the time limit of the con-
troller results in very limited depth and visits to previously
promising paths. Even though a child might have resulted in
a high reward, it will not be considered again, before all other
children have been expanded at least once. The partial expan-
sion modification allows the algorithm to consider “grandchil-
dren” (and any further descendants) of a node before all chil-
dren of that node have been explored. This allows for a deeper
search at the cost of exploration. In the Mario study, Partial
Expansion was useful combined with other modifications [8].

5.4 Reversal Penalty
A new MCTS modification introduced in this paper is UCT
reverse penalty. A problem with the standard MCTS con-
troller is that it would often just go back and forth between
a few adjacent tiles. This oscillation is most likely due to
the fact that only a small amount of playouts are performed
each time MCTS is run, and therefore a single, or a few high
scoring random playouts completely dominate the outcome.
Additionally, when there are no nearby actions that result in
a score increase, an action is chosen at random, which often
also leads to behaviors that move back and forth. Instead, the
goal of UCT reverse penalty is to create a controller that ex-
plores more of the given map, without increasing the search
depth. To achieve this the algorithm adds a slight penalty to
the UCT value of children that lead to a recently visited level
tile (i.e. “physical position” in the 2D game world). How-
ever, the penalty has to be very small so it does not inter-
fere with the normal decisions of the algorithm, but only af-
fect situations in which the controller is going back and forth
between fields. This modification is similar but not identi-
cal to exploration-promoting MCTS modifications proposed
in some recent work [12; 14].

In the current experiments, a list of the five most recently
visited positions is kept for every node, and the penalty is 0.05;
when a node represents a state where the avatar position is one
of the five most recent, its UCT value is multiplied by 0.95.

6 Experiments
The experiments in this paper are performed on the twenty
games presented in Table 3 and Table 4. In order to make our
results comparable with the controllers submitted to the gen-
eral video game playing competition, we use the same soft-
ware and scoring method. Each game is played five times for
each combination of MCTS modifications, one playthrough
per game level. This configuration follows the standard setup

for judging competition entries. Each level has variations on
the locations of sprites and in some games variations on non-
player character (NPC) behavior. There are nine different
combinations plus the vanilla MCTS controller, which gives
900 games played in total. The experiments were performed
on the official competition site, by submitting a controller fol-
lowing the competition guidelines. All combinations derive
from the four modifications explained in the previous section:
mixmax scores, macro actions, partial expansion and UCT re-
verse penalty.

Two measures were applied when analyzing the experi-
ments: the number of victories and the score. The GVG-AI
competition weighs the number of victories higher than the
achieved score when ranking a controller; it is more important
to win the game rather than losing the game with a high score.
In both Table 3 and 4 the scores are normalized to values be-
tween zero and one.

7 Results
The top three modifications are UCT reverse penalty, mix-
max and partial expansion. According to the total amount
of wins, the MCTS controller with UCT reverse penalty is
the best performing controller. Thirty wins in the training
set and seventeen wins in the validation set. The number of
wins is slightly better than the number of wins of the vanilla
MCTS controller (27). However, the vanilla controller re-
ceives a higher number of points (756), compared to the num-
ber of points of the UCT reverse penalty modification (601).
Videos of the UCT reverse penalty controller can be found
here: http://bit.ly/1INlpF9.

Compared to the vanilla MCTS controller, the mixmax
modification alone does not increase the total amount of wins
or points. It does however improve the performance in some
games. In Missile Command the vanilla controller scored
higher than mixmax, but they have an equal chance of win-
ning. In the game Boulderdash, mixmax wins more often
but scores less points. By applying mixmax, the controller
wins games faster; points are scored whenever a diamond
spawns (time based) and when the controller collects dia-
monds. Therefore the faster the win, the less points.

Combining UCT reverse penalty and mixmax shows
promising results (Table 4). This controller was the highest
scoring and most winning controller looking at the total val-
ues. It was the only controller winning any playthroughs in
the game Eggomania. The gameplay is characterized by a
controller that moves from side to side, whereas the other con-
trollers only move as far as they can “see”.

Interestingly, whenever a combination of modifications
contains macro actions, the controller performs badly, both
in terms of total score and total wins. As stated previously
macro actions enables a deeper search, at the cost of precision.
This ability enables macro controllers to succeed in games like
Camelrace; as soon as it finds the goal the agent will move to
it. The other MCTS controllers fail in Camelrace because they
do not search the tree far enough. However, the MCTS modi-
fications with macro action lose almost every other game type
due to lack of precision. For example, in Pac-Man-like games,
it searches too deep, likely moving past the maze junctions
and never succeeding in moving around properly. The macro
action experiments were done with a repeat value of three (i.e.
using the same action three times in a row). The repeat value
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has a profound effect on how the controller performs, and is
very domain specific. The repeat value for Camelrace should
be very high, but in Pac-Man it should be very low for it to not
miss any junctions.

The game Camelrace is uncovering one major problem of
the MCTS controllers; the play-out depth is very limited,
which is a problem in all games with a bigger search space.
If the controller in Pac-man clears one of the corners of the
maze, it can get stuck in that corner, therefore never reach-
ing nodes that give points. The only controller that wins any
games in Pac-Man is UCT reverse penalty and its combination
with mixmax. UCT reverse penalty without mixmax scores
most points, but with mixmax it wins all playthroughs and
is ranked second in achieved score. The depth cannot be in-
creased due to the time-limitations in the competition frame-
work.

In the game Frogs, the avatar shows problematic behavior.
The avatar has to cross the road quickly without getting hit by
the trucks in the lanes. Most roll-outs are unable to achieve
this. The most common behavior observed is a controller that
moves in parallel to the lanes and is never crossing it. No
controllers are able to win all the playthroughs, but controllers
using mixmax scores or UCT reverse penalty sometimes win.

When comparing our results with the ranking on the official
competition site, our controller is performing better on the val-
idation set. The sampleMCTS scores 37 points and wins 16 of
50, where our controllers scores 75 points and wins 20 of 50.
This places the controller on seventh place, four places higher
than sampleMCTS. In the training set our controller scores
less points, but wins three games more than the sampleM-
CTS. This places our controller on tenth place, three places
lower than sampleMCTS.

8 Discussion and Future Work
According to our experiments the [UCT reverse penalty, mix-
max] combination was the one that performed best overall,
and the only one that convincingly beat Vanilla MCTS on the
validation set. It should be noted that while we used the offi-
cial scoring mechanism of the competition, higher number of
playthroughs might have been preferable given the variability
between games. Several games contains NPCs, and those have
very different behaviors. Additionally, their behaviors are not
only different per game, but also per playthrough. In games
like Pac-Man (G 7 in the validation set), the enemy ghosts be-
have very stochastically. Because of this stochastic behavior,
the results of five playthroughs will vary even using the same
controller.

The presented results show that each MCTS modification
only affects subsets of games, and often different subsets. One
could argue that the sampleMCTS controller in the framework
is rather well-balanced.

One could also argue that the fact that no single MCTS
modification provides an advantage in all games shows that
the set of benchmark games in GVG-AI provides a rich set
of complementary challenges, and thus actually is a test of
“general intelligence” to a greater degree than existing video
game-based AI competitions. It remains to be seen whether
any modification to MCTS would allow it to perform better
across these games; if it does, it would be a genuine improve-
ment across a rather large set of problems.

9 Conclusion
This paper investigated the performance of several MCTS
modifications on the games used in the General Video Game
Playing Competition. One of these modifications is reported
for the first time in this paper: UCT reverse penalty, which
penalizes the MCTS controller for exploring recently visited
children. While some modifications increased performance
on some subset of games, it seems that no one MCTS vari-
ation performs best in all games; every game has particular
features that are best dealt with by different MCTS variations.
This confirms the generality of AI challenge offered by the
GVG-AI framework.
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Training set (Normalized scores)

Controller G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 G 9 G 10 Total points Total winsp v p v p v p v p v p v p v p v p v p v
sampleMCTS 1.00 5 1.00 1 0.89 5 0.88 4 0.83 1 0.69 4 0.67 2 0.88 1 0.44 2 0.24 2 756 27
[mixmax] 0.90 4 0.53 3 0.38 5 0.92 4 0.33 0 1.00 4 0.33 1 1.00 1 0.81 3 0.41 1 727 26
[macroActions] 0.11 0 0.26 1 0.08 4 0.00 1 0.00 0 0.03 2 0.00 0 0.38 0 0.17 1 0.19 1 448 10
[partialExp] 0.91 5 0.47 1 1.00 5 0.62 3 0.00 0 0.80 5 0.33 1 1.00 2 0.29 2 0.54 2 707 26
[mixmax,macroActions] 0.00 4 0.15 0 0.54 4 0.08 1 0.00 0 0.29 2 0.00 0 0.50 0 0.00 0 0.11 0 453 11
[mixmax,partialExp] 0.47 2 0.47 0 0.41 4 0.23 2 0.83 1 0.69 4 0.33 1 0.50 0 0.51 3 0.57 3 615 20
[macroActions,partialExp] 0.84 5 0.15 1 0.27 5 0.62 3 0.00 0 0.43 2 1.00 3 0.25 0 0.23 1 0.68 3 607 23
[macroActions,mixMax,partialExp] 0.27 3 0.00 0 0.43 5 0.23 1 0.00 0 0.00 1 0.00 0 0.38 0 0.21 1 0.00 0 481 11
[UCT reverse penalty] 0.15 1 0.69 3 0.14 5 1.00 5 1.00 2 0.69 5 0.67 2 1.00 1 0.56 2 0.62 4 601 30
[UCT reverse penalty, macroactions] 0.65 3 0.13 0 0.35 5 0.50 4 0.00 0 0.31 3 0.33 1 0.00 0 0.09 1 0.41 1 552 18
[UCT reverse penalty, mixMax] 0.82 5 0.76 3 0.00 5 1.00 5 0.00 0 0.69 3 0.00 0 0.75 1 1.00 2 1.00 5 730 29

Table 3: Results on the CIG2014 training set. Scores are normalized between 0 and 1 - G 1: Aliens , G 2: Boulderdash , G 3:
Butterflies , G 4: Chase , G 5: Frogs , G 6: Missile command , G 7: Portals , G 8: Sokoban , G 9: Survive zombies , G 10:
Zelda

Validation set (Normalized scores)

Controller G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 G 9 G 10 Total points Total winsp v p v p v p v p v p v p v p v p v p v
sampleMCTS 0.00 0 0.24 0 0.63 2 0.48 2 1.00 1 0.62 3 0.60 0 0.54 5 0.82 3 0.09 0 7545 16
[mixmax] 1.00 1 0.75 0 0.44 0 0.85 4 0.46 0 0.82 2 0.68 0 0.46 5 0.92 4 0.04 0 6849 16
[macroActions] 1.00 1 0.03 0 0.81 0 0.00 2 0.06 0 0.57 1 0.08 0 0.18 0 0.30 1 0.00 0 2656 5
[partialExp] 0.00 0 0.00 0 0.13 1 1.00 3 0.80 0 0.68 3 0.70 0 0.73 5 0.72 3 0.15 0 9849 15
[mixmax,macroActions] 1.00 1 0.07 0 0.81 0 0.02 1 0.29 0 0.00 2 0.00 0 0.00 0 0.00 1 0.02 0 515 5
[mixmax,partialExp] 0.00 0 0.72 0 0.31 0 0.63 3 0.60 0 0.13 3 0.20 0 0.19 3 0.70 4 0.04 0 3172 13
[macroActions,partialExp] 1.00 1 0.27 0 0.75 0 0.66 4 0.00 0 0.57 2 0.51 0 0.09 1 0.56 2 0.00 0 2364 10
[macroActions,mixMax,partialExp] 1.00 1 0.52 0 0.75 0 0.53 3 0.23 0 0.54 2 0.15 0 0.09 1 0.32 1 0.02 0 1968 8
[UCT reverse penalty] 1.00 1 0.62 0 0.00 0 0.46 5 0.26 1 0.69 3 1.00 1 0.45 3 1.00 3 0.05 0 6873 17
[UCT reverse penalty, macroactions] 1.00 1 0.31 0 1.00 1 0.26 4 0.11 0 0.68 0 0.73 0 0.00 0 0.75 2 0.01 0 1460 8
[UCT reverse penalty, mixMax] 1.00 1 1.00 0 0.69 2 0.52 4 0.23 0 1.00 1 0.98 5 1.00 4 0.96 1 1.00 2 13358 20

Table 4: Results on the CIG2014 validation set. Scores are normalized between 0 and 1 - G 1: Camel race, G 2: Digdug,
G 3: Firestorms, G 4: Infection, G 5: Firecaster, G 6: Overload, G 7: Pacman, G 8: Seaquest, G 9: Whackamole, G 10:
Eggomania
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Chong-U Lim, and Tommy Thompson. The 2014 gen-
eral video game playing competition. IEEE Transactions
on Computational Intelligence and AI in Games, 2015.

[18] Diego Perez, Spyridon Samothrakis, Julian Togelius,
Tom Schaul, and Lucas Simon. The general video game
AI competition - 2014. http://www.gvgai.net/,
2014. [Online; accessed 25-December-2014].

[19] Edward J Powley, Peter I Cowling, and Daniel White-
house. Information capture and reuse strategies in Monte
Carlo tree search, with applications to games of hidden
information. Artificial Intelligence, 217:92–116, 2014.

[20] Edward J. Powley, Daniel Whitehouse, and Peter I.
Cowling. Monte Carlo tree search with macro-actions
and heuristic route planning for the multiobjective phys-
ical travelling salesman problem. In Computational In-
telligence in Games (CIG), 2013 IEEE Conference on,
pages 1–8. IEEE, 2013.

[21] Tom Schaul. A video game description language for
model-based or interactive learning. In Computational
Intelligence in Games (CIG), 2013 IEEE Conference on,
pages 1–8. IEEE, 2013.

[22] Julian Togelius. How to run a successful game-based
AI competition. IEEE Transactions on Computational
Intelligence and AI in Games, 2014.

GIGA'15 Procededings 77


